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Introduction
Various human genetic diseases are associated with 
gross chromosomal abnormalities that involve multiple 
genes in the aberrant chromosome. These abnormalities 
include deletions, duplications, and different types 
of aneuploidies with an incidence of  ∼1:  150 live 
births  (Hsu, 1998). Ring chromosome is another 
chromosomal abnormality that is prevalent in about 
one in 50 000–100 000 (Bershteyn et al., 2014) and is 
usually formed due to terminal deletion (Morgan, 1926).

These chromosomal abnormalities are usually 
associated with alteration of the gene dosage within 
the nucleus, which can disrupt the nuclear structure 
and organization, with subsequent affection of normal 
chromatin contact patterns and genomic regulation. 
As numerous genes are involved in this process, 
the deleterious effect could be augmented due to 
involvement of different genes in the same or linked 
pathways (Cremer and Cremer, 2001; Hancock, 2014).

Current available managing strategies are maintained 
for monogenic disorders through manipulating a single 

gene at a time, thus they are not beneficial for confronting 
chromosomal abnormality disorders  (Naldini, 2015; 
Plona et al., 2016).

Although targeting an alteration of a high gene dosage 
is a challenging approach, however, various techniques 
have been recently evolved in attempt to deal with these 
distressing disorders under the heading Chromosome 
Therapy (Li et al., 2012; Kim et al., 2014).

Chromosome therapy is a promising future therapeutic 
plan directed to alleviate the devastating effects of 
these large chromosomal abnormalities through 
amending numerous genes and regulatory elements 
of the aberrant chromosome. To achieve these goals, 
it is mandatory to develop methods for abolishing 
the abnormal chromosome and/or substituting it by a 
normal functioning one (Amano et al., 2015). Hence, 
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numerous in  vitro methods have been proposed for 
addressing different chromosomal abnormalities.

Literature review

Proposed techniques for implementing chromosome 
therapy
The goal is to remove or silence the extrachromosomal 
material from the cells or to replace the genetic material 
that is lost, thus eliminating the deleterious effects of 
the altered gene dosage.

It is noteworthy that several proposed designs are 
either inspired or explained from naturally existing 
mechanisms for modifying cell cycle errors (Table 1).

Using X‑Inactivation Specific Transcript gene for silencing 
the added chromosome
The X‑Inactivation Specific Transcript  (XIST) gene 
is a noncoding RNA gene normally located on the 
X chromosome and is responsible for silencing and 
inactivation of one of the two X chromosomes in 
females  (Brown et  al., 1991). During embryonic 
development, the XIST RNA accumulates along the 
whole length of one X chromosome that becomes the 
inactive X with subsequent silencing of most genes. 
This silencing leads to dosage compensation between 
males (XY) and females (XX) (Clemson et al., 1996).

Jiang et al.  (2013) took the advantage of this normal 
mechanism for applying the same model using an 
inducible version of XIST to be inserted in induced 
pluripotent stem cells  (iPSCs) derived from patients 
with Down syndrome  (trisomy 21). The XIST was 
directed to a single copy of chromosome 21 by the aid 
of zinc‑finger nucleases, this was followed by activation 
of the XIST gene using doxycycline treatment. This 
resulted in silencing of the additional chromosome 
with subsequent correction of the altered gene dosage. 
Moreover, the observation that cellular performance 
has been improved in vitro in the form of increasing 

cellular proliferation and neural differentiation, 
suggested that this approach could eventually lead 
to conclusive treatment for Down syndrome. Hence, 
this technique is considered a potential mechanism 
for silencing whole chromosomes in different types 
of trisomies and could also be used in cases of partial 
trisomies due to large duplications (Fig. 1).

Positive–negative selectable markers to abolish the extra 
chromosome
This technique was presented by Li et al. (2012), where 
thymidine kinase–neomycin (TKNEO) transgene was 
introduced through an adeno‑associated viral vector in 
iPSCs obtained from a patient with Down syndrome. 
TKNEO transgene encodes both neomycin resistance 
and ganciclovir sensitivity (Chan et al., 2001). So, when 
the whole set of cells was treated with a toxic neomycin 
analog (G418), cells devoid of the TKNEO transgene 
were excluded from the cohort (positive selection). Only 
cells that containing the transgene were proliferated. 
Consequently, a cohort of disomic cells started to 
appear, then all cells were treated with ganciclovir, so 
any aneuploid cells containing the TKNEO transgene 
were eliminated  (negative selection). The end result 
was a subpopulation of pure disomic cells (Fig. 2).

Table 1 Association between proposed techniques for chromosome therapy and the naturally existing mechanisms
Technique Naturally existing mechanism
Using XIST gene for silencing the added chromosome 
in different types of trisomies

The XIST gene is a noncoding RNA gene normally located on the X 
chromosome and is responsible for silencing and inactivation of one of 
the two X chromosomes in female mammals

Using ring chromosome to improve different 
chromosomal abnormalities

Duplication of the normal homolog after losing the ring chromosome 
occurs through uniparental disomy (proved explanation)

(a) Correction of ring chromosome by excluding it from 
the cell cycle through cellular autonomous correction

Modifying the ring chromosome through double strand break and mitotic 
homologs recombination (suggested explanation)

(b) Induce ring formation of the aberrant chromosome 
by Cre‑lox recombination technology to be excluded 
from the cell cycle 
ZSCAN4‑induced trisomy rescue Enhancement of the euploid sate in the culture simulating trisomy rescue
Chromosome transplantation Spontaneous loss of the extra chromosome through trisomy rescue.

XIST, the X‑Inactivation Specific Transcript gene; ZSCAN4, zinc finger and SCAN domain containing 4 gene.

Using X‑Inactivation Specific Transcript (XIST) gene for silencing the 
added chromosome. XIST is inserted in induced pluripotent stem 
cells  (iPSCs) derived from patient with Down syndrome to induce 
silencing of the additional chromosome.

Figure 1



Chromosome therapy: approaches and challenges Hussen  3

Using ring chromosome to improve different chromosomal 
abnormalities
Ring chromosomes usually result from breaks at the 
P  and q ends of the chromosome with subsequent 
union of the broken ends to produce a continuous ring. 
Two approaches involving ring chromosome have been 
proposed for chromosome therapy.

Correction of ring chromosome by excluding it from the cell 
cycle through cellular autonomous correction
Bershteyn et al.  (2014) studied derived fibroblast cell 
lines from a patient with Miller–Dieker syndrome, 
deletion of 17p13.3 in this patient led to formation 
of a ring chromosome 17. Reprogramming of these 
fibroblasts into iPSCs resulted in a cellular autonomous 
correction, where the ring chromosome was lost and 
the normal homolog was duplicated.

Two different mechanisms have been suggested 
to elucidate these results, either uniparental 
disomy  (UPD) with loss of heterozygosity where 
both chromosome homologs were derived from a 
single parent (Robinson, 2000) or the breakage of the 
ring followed by repair through mitotic homologous 
recombination (Moynahan and Jasin, 2010).

For distinguishing between these two possibilities, 
single‑nucleotide polymorphism array has been 
performed to determine the degree of homozygosity 
on chromosome 17.

The results of single‑nucleotide polymorphism 
array supported the mechanism of UPD. All these 
observations suggest that ring chromosome formation 
could be a feasible approach to abolish chromosomal 
aberrations associated with ring chromosomes with 
further improvement of the clinical phenotype.

Induce ring formation of the aberrant chromosome by 
Cre‑lox recombination technology to be excluded from the 
cell cycle
Plona et  al.  (2016) assumed that mimicking the 
previous natural mechanism of chromosome loss 
and compensation, amending different structural 
chromosomal abnormalities can occur, as the aberrant 
chromosome can be manipulated to form ring 
chromosome with subsequent removal from the cell 
line during cellular proliferation. Rapid proliferation of 
the iPSCs containing the ring chromosome could lead 
to its substitution with a normal copy through UPD. 
This can be performed by using site‑specific Cre‑lox 
recombination technology  (Van Duyne et  al., 2015), 
where loxP  (34‑bp directionally oriented sequences) 
is inserted in both arms of the abnormal chromosome 
(p and q), then Cre recombinase enzyme will cause 
recombination between the two loxP sites, and the 
genetic material in‑between will be lost to form a ring. 
Cells will proliferate for several passages to allow for 
losing the ring chromosome (Fig. 3).

Zinc finger and SCAN domain containing 4‑induced trisomy 
rescue
Amano et al.  (2015) implemented a trial in cultures of 
Down syndrome and Edwards syndrome (Trisomy 18) 
patients’ fibroblast cells. They used zinc finger and SCAN 
domain containing 4  (ZSCAN4) gene, which encodes 
a protein involved in telomere maintenance and 
sustaining normal karyotype for sequential cell divisions 
in the culture  (Zalzman et  al., 2010). To deliver 
ZSCAN4 inside the cells, they used integration‑free 
Sendai viral vector  (SeV‑hZSCAN4) or synthetic 
mRNA (Syn‑hZSCAN4) encoding ZSCAN4. Transient 
expression of the ZSCAN4 protein resulted in an increase 
of disomic cells in the culture, where high resolution 
G‑banding technique revealed 40% normal disomic cells.

Positive–negative selectable markers to abolish the extra chromosome  (Plona et  al., 2016)  (a) thymidine kinase–neomycin  (TKNEO) 
transgene was introduced in the induced pluripotent stem cells (iPSCs) from a patient with Down syndrome. (b) The set of cells was treated 
with a toxic neomycin analog (G418). (c) Cells devoid of the TKNEO were excluded (positive selection). (d) Cells containing the TKNEO got 
proliferated. (e) Disomic cells started to appear. (f) All cells were treated with ganciclovir (GCV), cells containing the TKNEO were eliminated 
(negative selection). (g) A subpopulation of pure disomic cells starts to appear

Figure 2
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Losing of the extra chromosome is suggested to occur 
through a mechanism simulating the natural existing 
mechanism termed trisomy rescue (Amano et al., 2015) 
where normally if a fertilized ovum contains three 
copies of a chromosome, it can lose one of these 
chromosomes to form a normal, diploid chromosome 
complement  (Balbeur et  al., 2016). Hence, without 
direct genetic alteration, induction of this small biologic 
molecule was able to enhance an euploid state in the 
culture and allow for selection of disomic cells (Fig. 4).

Human artificial chromosomes for replacing deleted genes
Normally human centromere chromatin and 
heterochromatin are assembled as a centromeric 
highly repetitive DNA sequence called alphoid DNA 
or α‑satellite DNA. α‑satellite DNA can form a de 
novo centromere and subsequent human artificial 
chromosome (HAC) when introduced into the human 
culture of fibrosarcoma cells. HACs are considered as 
microchromosome that can act as a vector for gene 
transfer (Ohzeki et al., 2020), HAC as a vector could 
transfer the entire human dystrophin gene (2.4 Mb) 
that were stably maintained in mice and human 
immortalized mesenchymal stem cells.

HACs have several advantages over other gene delivery 
vectors, as they have unlimited transgene capacity 
compared with bacterial artificial chromosomes (BAC) 
and yeast artificial chromosomes  (YAC), which 
have transgene capacity of about 300  kb and 
2.5 Mb, respectively. YAC are genetically engineered 
chromosomes derived from the yeast DNA, where a 
sequence of DNA could be inserted and cloned, whereas 
BAC is an engineered bacterial DNA molecule used for 
DNA sequences cloning (Kazuki and Oshimura, 2011).

The genetic material introduced by BAC and YAC 
vectors can cause alteration of the expression levels 
and can disrupt the original human genome. HACs 
differ in this regard, as they are naturally segregates in 
human cells with neither integrating nor immunogenic 

consequence  (Kouprina et  al., 2014). Moralli and 
Monaco (2015) reported that HACs have been shown 
to form functional kinetochores, which maintain their 
stability through successive cellular divisions, and even 
through differentiation of human embryonic stem 
cells to multiple cell lines. Although HACs are stable 
intracellular, they are very fragile, extracellular, and 
always require a suitable technique for intracellular 
delivery.

Accordingly, Plona et al.  (2016) suggested that using 
HACs could be ideal for reverting chromosomal 
deletions. Where this can provide stable and functional 
copies of the deleted genes, as well as secure expression 
of the genes in the typical physiological pattern for each 
cell type receiving a copy. However, the availability of 
a suitable technique is mandatory to allow intracellular 
transmission.

Chromosome transplantation
Chromosome transplantation  (CT) is a recent 
approach that could be categorized under the field 
of chromosome therapy. CT could be defined as 
the substitution of an aberrant chromosome with 
an exogenous normal one  (Castelli et  al., 2019). 
Paulis et  al.  (2020) declared the success of CT in 

ZSCAN4‑induced trisomy rescue. Using ZSCAN4 protein resulted in 
an increase of disomic (euoploid) cells in the culture. ZSCAN4, zinc 
finger and SCAN domain containing 4.

Figure 4

Using Cre‑lox recombination technology to form ring chromosome with subsequent removal from the cell cycle (Plona et al., 2016). (a) Induced 
pluripotent stem cells (iPSCs) from a patient with structural chromosomal abnormality. (b) LoxP are inserted in both arms of the abnormal 
chromosome. (c) Cre recombinase enzyme will cause recombination between the two loxP sites, the chromatin in‑between will be lost to form 
ring. (d) Cells will proliferate to allow losing the ring chromosome. (e) Copying of the normal homolog.

Figure 3
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human iPSCs derived from Lesch–Nyhan syndrome 
patients  (LN‑iPSCs). LN syndrome is an X‑linked 
genetic disorder characterized by a mutation in the 
HPRT gene  (Nyhan et al., 1996). Thus, the aim was 
to exchange HPRT-defective X chromosome with a 
normal one.

Initially, they have prepared a donor normal cell line 
that could be used for the correction of LN‑iPSCs, 
then the normal donor X chromosome has been 
integrated with the LN‑iPSCs through modified 
microcell‑mediated chromosome transfer technique 
where a coalescing virus  (EnvΔRvirus) was added 
to maintain fusion between the microcells and 
LN‑iPSCs. The resulting fused cells were selected using 
hypoxanthine–aminopterin–thymidine medium to 
detect those in which the normal donor X chromosome 
has been successfully transplanted.

The selected cells with the additional X chromosome 
were liable for losing it spontaneously after several 
passages in the culture. The outcomes were normal 
diploid clones in which the endogenous aberrant 
chromosomes have been lost. Liability for spontaneous 
loss of the aberrant chromosome from LN‑iPSCs could 
be ascribed to the naturally existing mechanism termed 
trisomy rescue (Li et al., 2017; Inoue et al., 2019). Paulis 
et al. (2020) accentuated that CT could be a therapeutic 
strategy for various X‑linked disorders and assumed 
its efficiency in the adjustment of different structural 
chromosome abnormalities including large deletions.

Anticipated clinical applications and future prospects
Despite being at the research phase, chromosome 
therapy is a promising field as its clinical application 
could improve patients with different disorders 
associated with chromosomal abnormalities (Table 2).

Current obstacles for applying chromosome therapy

Ethical considerations
Chromosome therapy is limited by certain ethical 
issues; as current ethical implications impede germline 
genetic alterations, chromosome therapy will be 
limited to somatic cells in the near future. Confining 
chromosome therapy to the somatic cells will bear the 
chance of inheriting the abnormal chromosomes to 
the off springs through the untreated aberrant germ 
cells. Although germline intervention could preclude 
such inheritance, it may affect fetal development in 
unexpected ways or lead to long‑term side effects 
that are not comprehended. Consequently, this will 
represent serious psychosocial implications at the 
personal and societal levels  (Araki and Ishii, 2014; 
Ishii, 2015).

Technical limitations
Although several strategies have been proposed for 
chromosome therapy nevertheless, nearly all of them 
have certain technical obstacles that hinder their 
current clinical application. As chromosome therapy 
is worth, different studies tried to present suggestions 
to overcome these obstacles (Plona et al., 2016; Paulis 
et al., 2020) (Table 2).

Other general limitations for applying chromosome 
therapy include nonselective targeting, defective 
efficiency, potential immunological reactions, as well 
as cellular toxicity  (Naldini, 2015). Owing to these 
limitations, there are some recommendations for 
restricting such type of therapy for tissues that can be 
isolated from the patient, where the defective tissue is 
isolated, amended ex vivo in controlled lab conditions, 
and then retransplanted into the same patient. Clinical 
utility and patient suitability are confirmed before 
transplantation. Bone marrow transplantation is 
one of the most common examples for this process 
(De Ravin et al., 2016).

Besides, chromosome therapy cannot be applied to 
cells and tissues that are not actively dividing, for 
example, the postmitotic neurons of the brain, as 
most of the current suggested procedures require 
successive frequent cellular divisions. Hence, at this 
stage, chromosome therapy can only be considered as 
a plausible therapeutic strategy for somatic, actively 
dividing cells (Plona et al., 2016).

Conclusions
Chromosome therapy has expanded the span of 
genetic disorders that can be manipulated to comprise 
chromosomal aberrations. Various techniques were 
developed aiming to remove or silence the extra 
chromosomal material from the cells or to replace the 
lost genetic material, thus eliminating the deleterious 
effects of the altered gene dosage. As all the studied 
strategies of chromosome therapy remain at the cellular 
level, animal experiments are expected to provide 
substantial contributions in this field, most importantly, 
genetically engineered mouse models including 
transgenic, knockout, and knock‑in mice. This could 
allow testing the effect of this therapeutic intervention, 
hence facilitating the initiation of clinical applications.
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