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Introduction
Infertility is a relatively common problem, affecting 
between 17 and 25% of all couples, and is defined 
as the inability of a couple of reproductive age 
to conceive following 12 months of unprotected 
intercourse  (Agarwal et  al., 2015). An increased 
incidence of chromosomal abnormalities in infertile 
males has been reported by several studies. Nonetheless, 
in intracytoplasmic sperm injection  (ICSI), any 
chromosomal abnormality in the male or female 
partner could influence the outcome and the same 
also holds true for chromosomal abnormality in a male 
partner (Harton and Tempest, 2012). Men are identified 
as having unexplained male infertility  (UMI) when 
they are infertile even with normal semen analysis, 
normal history and physical examination, and when 
female factor infertility has been ruled out. The median 
occurrence of UMI is about 15%, even despite the fact 
that reports of UMI in study populations have recorded 

a range from 6 to 37% (Hamada et al., 2012). Potential 
reasons that might lead to problems in conceiving in 
UMI include the presence of antisperm antibodies, 
sperm DNA damage, high levels of reactive oxygen 
species, and sperm dysfunction (Pandiyan et al., 2017).

Imperfect spermatogenesis of unidentified etiology 
undetectable by the usual clinical, instrumental, 
or laboratory methods is defined as idiopathic 
oligoasthenoteratozoospermia  (iOAT). It affects 
around 30% of infertile men and is usually diagnosed 
by exclusion. Men with severe OAT have sperm 
concentration less than 5 millions/ml (Cavallini, 2006; 
World Health Organization, 2010).
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Fluorescent in‑situ hybridization  (FISH) is 
considered a good tool and a preliminary step 
toward understanding the association between male 
infertility and chromosome segregation shown by 
the percentage of aneuploid sperm (Ramasamy et al., 
2014). DNA damage occurs in both developing and 
mature sperm; however, high levels of DNA damage 
have been reported in infertile men (Zini and Libman, 
2006). The Comet assay is an easy, reliable technique 
that can detect even low levels of DNA damage 
(Kawaguchi et al., 2010).

This study was designed to determine the chromosomal 
abnormalities, sperm disomy, and sperm DNA 
fragmentation (SDF) in infertile men with idiopathic 
severe OAT and men with unexplained infertility with 
normal semen parameters.

Patients and methods

Patients
Fifty  male participants were enrolled in this study: 
20 infertile men with idiopathic severe OAT (group I), 
20 men with unexplained infertility with normal semen 
parameters (group II), and 10 fertile men as controls. 
Patients were recruited from the Andrology 
Outpatient Clinic, National Research Center  (from 
September 2014 to July 2016). Informed consent 
was obtained from the patient or the guardian. The 
informed consent form was approved by the Medical 
Research Ethics Committee, NRC. Inclusion criteria 
comprised age range 20–40 years, primary infertility 
for more than 1  year, and sperm count less than 5 
million sperm/ml for severe OAT and more than or 
equal to 15 million sperm/ml for men with unexplained 
infertility. Patients with varicocele, malignancy, and 
liver or kidney diseases were excluded. Each man was 
asked to provide a semen sample, and the abstinence 
period was from 3 to 7 days. For the control group, 
men with normal semen analysis according to World 
Health Organization (2010), men free of any systemic 
and local diseases, fertile men and those who had had 
children in the last 2 years, and men in age range of 
20–40  years were included. Ultrasonography and 
conventional semen analysis were carried out at least 
twice.

Methods

Cytogenetic evaluation
Peripheral blood culture of the G‑banding technique: 
peripheral blood lymphocyte microcultures were 
performed according to standard methods of 
Hungerford, 1978  (Hungerford and Hungerford, 

1978). G‑banding on the metaphase chromosome 
was performed according to Verma and Babu (1995). 
Twenty metaphases were analyzed for each case. 
Individual chromosomes were identified, arranged, and 
karyotyped according to the International System for 
Human Cytogenomic Nomenclature  (ISCN, 2016). 
Numerical chromosomal abnormalities including 
aneuploidy  (monosomy or trisomy), polyploidy, and 
structural chromosomal abnormalities, including 
balanced abnormalities  (inversions, translocations, or 
insertions) were recorded.

Semen processing and FISH analysis
The semen samples were prepared for FISH analysis 
according to Miharu et  al.  (1994), with minor 
modifications. The FISH technique was used with a 
direct labeled cocktail X, Y probe  (cytocell) [DXZ1 
(spectrum green), DYZI (spectrum red)]. Analysis of 
FISH was carried out using a Zeiss microscope with 
an automated stage (Zeiss, Berlin, Germany), coupled 
with a metasystem image analyzer. One thousand 
nuclei were analyzed for the number of signals. The 
number of signals of X and Y was scored per nuclei.

Comet assay for DNA fragmentation
The alkaline Comet assay for SDF was performed 
according to Ostling and Johanson (1984). Cells were 
analyzed by examining at least 50 comet images from 
each slide. Slides were examined using an Olympus 
BX51 microscope  (Olympus, Tokyo, Japan) with a 
fluorescent attachment and equipped with filter sets. 
Individual comet images were analyzed for several 
features including the total intensity (DNA content). 
The degree of damage was determined by grading the 
nuclei as undamaged, represented by brilliant intact 
DNA, and damaged, represented by stretching of 
attached strands of DNA or migration of individual 
pieces forming a tail.

Statistical analysis
Statistical analyses of the results were carried out 
using SPSS version 16 (SPSS Inc., Chicago, IL, USA). 
Numerical data were expressed as mean ± SD and range. 
The test of significance was performed using Student’s 
t‑test with the analysis of variance test. Correlations 
were tested by regression analysis. Comparisons and 
correlations were considered statistically significant if 
P ≤ 0.05.

Results
The age of the patients in this study ranged from 
22 to 40  years, with a mean age of 30.07  years. 
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Fifty‑five percent of the patients were between 
30 and 40 years old; 45% were younger than 30 years 
old. The age of the matched control group of fertile 
men ranged from 22 to 40  years, with a mean age 
of 29.1 years. In terms of semen parameters, group 
I had the lowest sperm count and sperm motility 
range of 0.1–3 (×106/ml) and 5–30%, respectively, 
compared with those of the controls of 50–83 (×106/
ml) and 40–73% and of group II of 15–70 (×106/ml) 
and 40–80%. Also, ejaculate volume was low in group 
I and group II, 0.4–4 and 0.1–4 ml, respectively, 
compared with the controls: 2.5–5.4 ml. There 
was a significant directly proportional relationship 
between age and the total disomic percent and DNA 
damage percent in group I and group II (Table 1 and 
Fig. 1).

A significant direct relationship between age 
and percentage of both total disomy and sperm 

DNA damage was observed in groups I and II 
(Table 1 and Fig. 2).

Cytogenetic investigations revealed chromosomal 
anomalies in 2 out of 40 patients. One patient in group 
I had a structural chromosomal abnormality  (5%) 
t(9,13)(p; q) (Fig. 3, panel B) and 1 patient in group 
II had sex chromosome abnormalities: mosaic 
forms (5%) (46,XY/47, XXY) (Fig. 3, panel C), while 
the remaining individuals were found to have normal 
karyotype (46,XY) (Fig. 3, panel A).

There was a significant inverse correlation between 
the disomic percent and the semen parameters among 
the 3 studied groups. The percentage of disomic 
sperm showed a higher increase in the spermatozoa 
of men with severe iOAT  (group I) than in men 
with unexplained infertility with high semen quality 
(group II), compared with the controls (Fig. 4).

Table 1 Descriptive statistics and comparisons of conventional semen parameters, DNA damage, and total disomy in the 
studied groups
Parameters Controls (n=10) Group 1 (n=20) Group 2 (n=20) Correlation (r) Significance (P)
Age

Mean±SD 29.1±5.64 30.6±5.9 30.8±5.6 -
Range 22-40 22-40 22-40 -

Sperm count (×106/ml)
Mean±SD 68.4±10.93 1.79±1.09 35±19.3 −0.41 0.002*
Range 50-83 0.1-3 15-70

Sperm motility (%)
Mean±SD 57.4±13.49 15.3±9.02 56.5±12.9 −0.46 0.005*
Range 40-73 5-30 40-80

Ejaculate volume (ml)
Mean±SD 3.52±0.87 2.29±0.98 2.26±1.04 −0.87 0.001*
Range 2.5-5.4 0.4-4 0.1-4

Total disomy (%)
Mean±SD 8±2.87 43.4±12.7 28.2±11.6 0.63 0.001*
Range 5-12 27-71 6-45

Sperm DNA (%) damage
Mean±SD 15.2±5.15 44.9±19.1 64.4±24.3 0.73 0.001*
Range 10-23 20-78 15-98

Data are represented as mean±SD. *P<0.01, significant.

Correlations: (a) significant positive correlation with total disomy percent (r = 0.63; P = 0.001) and (b) significant positive correlation with DNA 
damage percent for patients of group II (r = 0.73; P = 0.001).

Figure 1

ba
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Moreover, a positive correlation was found between 
DNA damage and the total disomy percent as shown in 
Fig. 2. Compared with the control, the SDF percentage 
increased in men with unexplained infertility (group II) 
than in patients with severe iOAT (group I) (Fig. 5).

Discussion
A large number of studies have extensively studied and 
investigated the association between male infertility 
and elevated proportions of sperm with extra or lost 

chromosomes in any given ejaculate  (Tempest et  al., 
2004; Hamada et al., 2012; Chatziparasidou et al., 2015; 
Jungwirth et al., 2017; Esteves et al., 2018), and a highly 
significant relationship between decreased semen quality 
parameters and increased sperm disomy was suggested 
by the majority of studies; this is in agreement with 
our findings. In humans, levels of sperm disomy can 
be increased by environmental factors such as alcohol 
abuse and heavy smoking (Harlev et  al., 2015); these 
findings are in good agreement with ours.

Analyzing the relation between sex chromosome 
disomy and the decreased semen quality, 
Mougou‑Zerelli et al. (2011) found a higher frequency 
of XY disomy in the spermatozoa of men with 
abnormal semen than in the control cases. In addition, 
no statistical difference was found between the XX and 
YY disomy rate. The results obtained from our study 
were consistent with their results: the total disomy 
percentage was considerably increased in group I than 
in group II. In the spermatozoa of men with idiopathic 
severe OAT, we reported a higher percentage of XY, 
XX, and YY disomy than in that in the group of 
men with unexplained infertility and normal semen 
quality; XX disomy was the most predominant in the 
2 groups (Mougou‑Zerelli et al., 2011).

Age is inversely proportional to sperm quality, sperm 
DNA damage, and sperm disomy. In conventional semen 

Correlation between DNA damage and total disomy percent 
(r = 0.51; P = 0.0007) for patients of both groups.

Figure 2

Male karyotype with the GTG-banding technique for the control group (46,XY). Panel A, one patient from group I (translocation 9p, 13q), and 
panel B, one patient from group II had (47,XXY) 5% cell line, Panel C.

Figure 3

Fluorescent in-situ hybridization technique ὰ-satellite cocktail probe for X and Y chromosomes for the control group C (Panel A), nuclei showing 
signals for X chromosome (green) and Y chromosome (red). Group I (Panel B) shows low XX,YY and XY disomy and group I (Panel C) shows 
high XX,YY and XY disomy.

Figure 4
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analysis, ejaculate volume, sperm concentration, motility, 
and morphology were more consistently reported to 
decrease with age in the studied infertile patients with 
an age range of 24–76  years (Brahem et  al., 2011). 
Sperm DNA integrity as assessed by the Comet assay 
was reported by Morris et al. (2002). The results of these 
reports are in agreement with ours, which revealed that 
age showed a highly significant inverse correlation with 
semen parameters among the studied groups. There 
was a highly significant positive correlation between 
age and percentage of both total disomy and sperm 
DNA damage among the studied groups. Sivanarayana 
et al. (2014) showed a negative correlation between SDF 
and semen parameters; the concentration of sperm, 
motility, and normal morphology were significantly 
lower in the abnormal DNA group than in the normal 
DNA group  (Sivanarayana et al., 2014). In our study, 
there was a reverse correlation between sperm DNA 
damage percent and semen parameters in the patients 
of group I. However, the level of SDF was increased 
in patients of group II with normal semen parameters 
than in patients with severe iOAT (group I). This 
finding could be attributed to the increased SDF as a 
sole causative factor in unexplained infertility.

Human male infertility is often related to chromosome 
abnormalities. Ocak et  al.  (2014) recorded structural 
or numerical chromosomal abnormalities in 12% of 
patients with azoospermia or severe oligospermia, 
and 10.9% of Chinese patients with azoospermia or 
severe oligozoospermia had been discovered to have 
chromosomal abnormalities  (Olewinska et  al., 2010; 
Ocak et al., 2014; Kaur et al., 2015).

Ghorbel et al. (2012) reported that Klinefelter syndrome 
accounts for 66.7% of cytogenetic abnormalities, and 
Amouri et  al.  (2014) reported that of 52  patients 
with abnormal cytogenetic defects, Klinefelter 
syndrome was present in 71% (Ghorbel et  al., 2012; 
Amouri et  al., 2014). Repetitive pregnancy losses are 
because of structural and rearrangement chromosome 
abnormalities, which increase the risk of pregnancy 
loss or transmission of chromosomal abnormalities to 

offspring because of the production of higher counts 
of unbalanced spermatozoa  (Ocak et  al., 2014). Our 
cytogenetic investigations revealed chromosomal 
abnormalities in 2 out of 40  patients; 1  patient in 
group I had a structural chromosomal abnormality, 
t(9,13)(p; q), and 1  patient in group II showed 
sex chromosome abnormalities in mosaic forms 
(46, XY/47, XXY). However, the remaining individuals 
were found to have normal karyotype (46, XY). This is 
supported by the previous study of Kayed et al. (2006).

Conclusions
In conclusion, this study highlights the importance of 
sperm DNA comet assay analysis for the evaluation 
of male infertility, especially those with unexplained 
infertility and normal semen parameters. Therefore, 
we recommend the inclusion of this test among other 
routine investigation tests that are carried out in 
infertile men.
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