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Introduction
Balanced reciprocal translocations between 
nonhomologous chromosomes constitute the 
most frequently detected chromosomal structural 
abnormality in couples with recurrent miscarriages. 
They are responsible for 2–5% of the recurrent 
miscarriages and more predominantly seen in female 
partners (Ozawa et al., 2008; Pal et al., 2018).

Apart from reproduction problems, such as pregnancy 
loss and infertility, carriers of balanced reciprocal 
translocations are oftentimes phenotypically normal. 
This reflects the balanced nature and the mitotic 
stability of the derivative chromosomes. Derivative 
chromosomes may, however, undergo abnormal 
segregation during meiosis  (gamete formation) that 
can affect the survival of gametes, cause recurrent 
miscarriages, or even lead to the birth of malformed 
children  (Fantes et  al., 2008; Suzumori and 
Sugiura‑Ogasawara, 2010).

Occasionally, breakpoints of translocation may alter 
gene‑expression regulatory elements or disrupt 
gene structure and may thus be associated with 
various human diseases, including many cancers 
(Vandeweyer and Kooy, 2009; Sandberg and 
Meloni‑Ehrig, 2010).

The human genome is swarmed with various families 
of interspersed retrotransposons, notably the long 
interspersed elements  (LINEs) and the short 
interspersed elements, which constitute around 45% 
of the genome. LINE‑1 (L1) family makes up about 
21% of the genome and consists of about 6500‑bp 
long repetitive sequences. The human genome 
contains around 500  000 copies of the L1 family. 
The 200–300‑bp long Alu repeat elements are the 
most abundant short interspersed elements in the 
genome. More than one million Alu sequences exist 
in the human genome, making up about 10% of its 
length ( Jelinek et al., 1980; Korenberg and Rykowski, 
1988; Hancks and Kazazian, 2012).

DNA double‑strand breaks  (DSBs) furnish the 
substrate for the nonhomologous end joining 
repair system that inaccurately join the breakpoints 
in nonhomologous chromosomes resulting in 
reciprocal translocations and formation of derivative 
chromosomes (Godwin et al., 1994; Fantes et al., 2008; 
Suzumori and Sugiura‑Ogasawara, 2010; Cornforth 
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et  al., 2018). Current evidence suggests that DSBs 
take place stochastically and that the breakpoints 
consistently occur in, or near repetitive elements, such 
as Alu and L1  (Suzumori and Sugiura‑Ogasawara, 
2010; Cretu Stancu et  al., 2017; Huddleston et  al., 
2017; Cornforth et al., 2018; Hu et al., 2018; De Coster 
et al., 2019; Eisfeldt et al., 2019). Importantly, it seems 
that, somehow, repeat elements participate in creating 
the DSBs during their  (retro) transposition. Gasior 
et  al.  (2006) have demonstrated that L1 expression 
leads to a high level of DNA DSB formation 
(Gasior et  al., 2006). Therefore, Alu and L1 may be 
implicated in the generation of balanced chromosomal 
translocations.

The current work was carried out to assess the possible 
correlation between the frequency of reciprocal 
translocations, reported in couples with recurrent 
miscarriages from different populations, and the 
densities of Alu and L1 repeat elements in the human 
genome.

Patients and methods
Approval for conducting the study was granted by the 
Ethical Review Committee of the Islamic University of 
Gaza. Data analyzed in this work were obtained from 
studies of chromosomal abnormalities observed in 
couples with recurrent miscarriages. Relevant literature 
was searched from PubMed database, or by citation 
search and reference lists of relevant articles. All 
reported karyotypes were established by conventional 
cytogenetic techniques. The 55 manuscripts considered 
in this work included 98 054 individuals (Turleau et al., 
1979; Sant‑Cassia and Cooke, 1981; Davis et al., 1982; 
Husslein et  al., 1982; Lippman and Veremans, 1983; 
Sachs et al., 1985; Bourrouillou et al., 1986; Castle and 
Bernstein, 1988; Fortuny et  al., 1988; Gadow et  al., 
1991; Fryns and Van Buggenhout, 1998; Al‑Hussain 
et  al., 2000; Sugiura‑Ogasawara et  al., 2004; Dubey 
et al., 2005; Celep et al., 2006; Stephenson and Sierra, 
2006; Clementini et al., 2007; Farcas et al., 2007; Iyer 
et al., 2007; Tavokina et al., 2007; Meza‑Espinoza et al., 
2008; Nazmy, 2008; Sugiura‑Ogasawara et  al., 2008; 
Goud et  al., 2009; Kiss et  al., 2009; Pal et  al., 2009; 
Chen et al., 2010; Cirakoglu et al., 2010; Cutiongco‑de 
la Paz et  al., 2011; Dutta et  al., 2011; Niroumanesh 
et  al., 2011; Vansenne, 2011; Karakus et  al., 2012; 
Saxena et  al., 2012; Sharif, 2012; Karman, 2013; 
Kochhar and Ghosh, 2013; Rajasekhar et  al., 2013; 
Sheth et al., 2013; Gonçalves et al., 2014; Gaboon et al., 
2015; Ghazaey et al., 2015; An et al., 2016; Atli et al., 
2016; Demirhan et al., 2016; Fan et al., 2016; Sudhir 
et al., 2016; Tunç et al., 2016; Ayed et al., 2017; Kalotra 
et  al., 2017; Веропотвелян et  al., 2017; Behbahani 

et  al., 2018; Cavalcante et  al., 2018; Elkarhat et  al., 
2018; Houmaid et al., 2018). The number of reciprocal 
translocations between nonhomologous autosomes 
reached 2262 (1402 females and 860 males). Owing to 
the rarity of translocations between sex chromosomes 
and autosomes, only autosomal translocations were 
taken into consideration. The frequency of translocation 
per autosome, regardless of the breakpoints location, 
was calculated by counting the number of times 
each autosome participated in the translocations 
(Tables 1 and 2).

The density of human‑specific L1 and Alu per 
autosome was obtained from the articles published 
by Carter et al.  (2003), Otieno et al. 2004, and Tang 
et al. (2018).

The strength of association between frequency of 
translocations and the density of human‑specific 
mobile elements, L1, Alu, AluYa, and AluYb repeat 
elements was measured by Pearson’s correlation 
test using a freely available statistics software 
(Wessa, 2017).

Results
The prevalence of reciprocal translocations 
among couples having recurrent miscarriages is 
2.31% (2262/98 054). This is more than 10‑fold higher 
than the translocation frequency encountered in the 
general population. The frequency of translocation per 
autosome is presented in Table 3. The table also includes 
the densities of human‑specific L1, Alu, AluYa, and 
AluYb repeat elements. Females constituted about 
62%  (1402/2262) of the translocation carriers. The 
higher translocation frequencies in the female patients 
was evident for all the autosomes (Fig. 1).

Strong and significant  (all P  <  0.0001) associations 
were observed between the autosomal densities of 
human‑specific retrotransposons (mobile elements, L1, 
Alu, AluYa, and AluYb) and reciprocal translocations, 
as indicated in Table 3. The association however, was 
the strongest between the translocations and AluYb 
elements (Table 4 and Fig. 2).

Discussion
The objective of this work was to examine the 
association between L1/Alu repeat elements densities 
and reciprocal translocations reported in couples 
experiencing more than or equal to 2 recurrent 
miscarriages from various populations  (Turleau et  al., 
1979; Sant‑Cassia and Cooke, 1981; Davis et al., 1982; 
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Husslein et  al., 1982; Lippman and Veremans, 1983; 
Sachs et al., 1985; Bourrouillou et al., 1986; Castle and 
Bernstein, 1988; Fortuny et  al., 1988; Gadow et  al., 
1991; Fryns and Van Buggenhout, 1998; Al‑Hussain 
et  al., 2000; Sugiura‑Ogasawara et  al., 2004; Dubey 
et al., 2005; Celep et al., 2006; Stephenson and Sierra, 
2006; Clementini et al., 2007; Farcas et al., 2007; Iyer 
et al., 2007; Tavokina et al., 2007; Meza‑Espinoza et al., 

2008; Nazmy, 2008; Sugiura‑Ogasawara et  al., 2008; 
Goud et al., 2009; Kiss et al., 2009; Pal et al., 2009; Chen 
et  al., 2010; Cirakoglu et  al., 2010; Cutiongco‑de la 
Paz et al., 2011; Dutta et al., 2011; Niroumanesh et al., 
2011; Vansenne, 2011; Karakus et  al., 2012; Saxena 
et  al., 2012; Sharif, 2012; Karman, 2013; Kochhar 
and Ghosh, 2013; Rajasekhar et al., 2013; Sheth et al., 
2013; Gonçalves et  al., 2014; Gaboon et  al., 2015; 

Table 1 Distribution of the different autosomal translocations ascertained in males
Chr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Total
1 –
2 5 – 5
3 4 1 – 5
4 5 2 6 – 13
5 3 5 2 6 – 16
6 5 4 5 5 5 – 24
7 1 5 5 4 5 4 – 24
8 4 4 5 2 1 6 7 – 29
9 4 2 2 7 5 1 1 1 – 23
10 3 2 2 5 4 3 2 5 3 – 30
11 3 3 2 1 2 3 0 6 2 4 – 26
12 4 2 4 2 4 1 0 3 1 0 0 – 21
13 1 1 1 2 3 2 9 4 2 3 3 2 – 33
14 0 0 2 3 2 1 3 3 1 5 1 0 0 – 21
15 0 1 2 6 1 2 0 2 2 3 2 3 3 0 – 27
16 1 0 1 1 3 3 1 1 0 1 2 0 1 1 0 – 16
17 1 1 1 0 2 3 4 3 2 1 1 4 0 3 1 3 – 33
18 3 0 3 2 0 2 1 2 1 2 2 3 0 2 0 2 0 – 25
19 3 0 0 1 0 0 0 0 0 1 0 0 2 1 0 0 0 0 – 8
20 1 1 1 1 1 2 0 0 0 1 0 1 1 0 0 2 0 2 1 – 15
21 1 2 0 2 0 0 3 1 1 1 2 1 0 0 0 2 0 2 0 0 – 18
22 0 0 0 1 0 0 2 0 0 3 8 1 0 0 0 1 1 2 1 0 0 – 20
Total 52 36 44 51 38 33 33 31 15 25 21 15 7 7 1 10 1 6 2 0 0

Table 2 Distribution of the different autosomal translocations ascertained in females
Chr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Total
1 –
2 8 – 8
3 6 2 – 8
4 8 6 8 – 22
5 2 3 4 6 – 15
6 6 10 12 15 6 – 49
7 8 7 7 8 3 7 – 40
8 2 4 9 5 4 9 4 – 37
9 6 7 5 3 4 2 3 4 – 34
10 7 2 3 7 5 7 8 3 2 – 44
11 5 6 4 4 3 7 4 6 2 8 – 49
12 0 4 3 5 4 8 5 2 2 2 7 – 41
13 4 4 3 4 3 4 5 6 7 4 3 3 – 50
14 3 1 4 6 1 3 6 2 4 3 1 2 1 – 37
15 2 9 4 5 1 4 1 1 2 2 2 1 2 3 – 39
16 8 3 2 1 0 3 2 0 2 3 1 4 0 1 1 – 31
17 1 1 3 3 0 0 2 3 2 2 3 3 2 2 0 2 – 29
18 2 6 1 1 2 1 8 1 2 1 7 0 3 3 2 3 4 – 47
19 3 0 3 1 0 1 0 4 0 1 2 0 0 0 1 1 0 0 – 17
20 0 1 0 3 0 3 4 1 0 0 1 0 3 1 1 5 2 0 0 – 25
21 3 1 0 3 0 1 2 4 0 3 1 0 0 0 2 3 0 1 1 2 – 27
22 1 0 0 1 0 0 2 1 2 1 22 1 1 0 1 3 0 0 2 0 0 – 38
Total 85 77 75 81 63 60 56 38 27 30 50 14 12 10 8 17 6 1 3 2 0
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Ghazaey et al., 2015; An et al., 2016; Atli et al., 2016; 
Demirhan et  al., 2016; Fan et  al., 2016; Sudhir et  al., 
2016; Tunç et al., 2016; Ayed et al., 2017; Kalotra et al., 
2017; Веропотвелян et  al., 2017; Behbahani et  al., 
2018; Cavalcante et  al., 2018; Elkarhat et  al., 2018; 
Houmaid et al., 2018). The strong correlation observed 
denotes an important role of those elements in the 
generation of translocations. Supporting evidence for 
this conclusion can be derived from prior research that 
focused on the characterization of breakpoint junctions 
involved in the formation of chromosomal structural 
variants, for example, translocations  (Suzumori and 
Sugiura‑Ogasawara, 2010; Liu et  al., 2012; Xu et  al., 
2014; Cornforth et al., 2018; De Coster et al., 2019). For 
instance, Eisfeldt et al. (2019) showed that all breakpoint 
junctions contained repeat regions, mostly Alu and 
LINE elements  (Eisfeldt et  al., 2019). Additionally, 
the translocation breakpoints characterization study of 

Cornforth et al. (2018) indicated that the breakpoints 
frequently occurred within interspersed Alu and LINE 
repeats  (Cornforth et al., 2018). Importantly, it seems 
that Alu/LINE repeat elements participate in creating 
the DSBs needed for the translocation, as illustrated 
by Gasior et  al.  (2006) who demonstrated that L1 
expression leads to a high level of DSB formation 
(Gasior et al., 2006). Moreover, studies on human cancers 
have also shown that repeat elements are mediators of 
chromosomal aberrations (Kolomietz et al., 2002; Tubio 
et  al., 2014). The ubiquitous nature of Alu and L1 
elements in the human genome and their vast residence 
in the noncoding (intergenic and intronic) regions of the 
genome make them plausible players in the formation 
of translocations.

In the current analysis, the strongest association 
was evident between translocations and AluYb 
elements. Interestingly, AluYb is one of the 
largest and most biologically active Alu lineage in 
the human genome  (Carter et  al., 2003). AluYb 
lineage composes  ∼40% of the human‑specific 
Alu elements  (Hedges et  al., 2004). Meanwhile, no 
association was found between the dormant AluJ 
and AluS families and the analyzed translocations 
(results not shown). This further points to a link 
between retrotransposition and translocations.

On analysis of reciprocal translocations in couples 
having recurrent miscarriages, and as is evident in 
the current work and that of other researchers in the 
field, translocations are consistently more predominant 
in female patients (Tharapel et  al., 1985; Tunç et  al., 
2016). This observation raises the question as whether 
the number of actively transposing Alu/L1 elements 
are different between males and females. Although 
there is no mention of this in the literature, this 
seems possible given that, DNA repeat elements 
methylation (and overall genome methylation) 
levels tend to be higher in males  (El‑Maarri et  al., 
2007; Hall et  al., 2014). The methylation of repeat 
elements is an important mechanism in suppressing 

Table 3 Frequencies of translocations counted for each 
autosome along with the densities of retrotransposons 
across the 22 autosomes
Chr. Males Females Both MEsa L1a Alua AluYbb AluYac

1 52 85 137 1147 297 667 123 213
2 41 85 126 1190 310 735 121 206
3 49 83 132 1036 268 633 119 166
4 64 103 167 1025 321 619 123 151
5 54 78 132 970 256 597 141 146
6 57 109 166 902 257 531 125 152
7 57 96 153 794 188 505 128 154
8 60 75 135 692 196 417 93 99
9 38 61 99 635 144 405 75 95
10 55 74 129 564 137 350 66 91
11 47 99 146 667 184 382 82 118
12 36 55 91 625 155 382 78 125
13 40 62 102 507 113 340 76 114
14 28 47 75 423 120 243 61 104
15 28 47 75 370 92 225 51 48
16 26 48 74 344 78 210 44 62
17 34 35 69 350 49 212 51 62
18 31 48 79 376 110 238 47 43
19 10 20 30 280 45 141 27 60
20 15 27 42 282 72 152 41 52
21 18 27 45 162 35 101 35 20
22 20 38 58 128 29 68 26 18
Total 860 1402 2262 13 469 3456 8153 1733 2135

ME, mobile element. aFrom Tang et al. (2018) (MEs include human 
specific: Alu, L1, and SVA retrotransposons). bFrom Carter et al. 
(2003). cFrom Otieno et al. (2004).
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Figure 1

Table 4 Association between repeat elements and 
translocation frequency in the study sample
Repeat 
element

Pearson’s correlation coefficient (r)
Males Females Both (males and females)

Human MEsa 0.80 0.85 0.85
Human L1 0.81 0.87 0.87
Human Alu 0.81 0.85 0.85
Human AluYb 0.86 0.88 0.89
Human AluYa 0.72 0.80 0.79

ME, mobile element. aMEs include: Alu, L1, and SVA retrotransposons.
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retrotransposition (Slotkin and Martienssen, 2007; Luo 
et al., 2014; Zheng et al., 2017). In the same context, 
epigenetic changes and deregulation of methylation 
can affect transposition and translocation frequency. 
Moreover, many environmental factors, for example, 
radiation and various pollutants had been shown to 
affect Alu methylation (Luo et al., 2014).

The same reasoning can be used to partly explain why 
certain autosomes, for example, t(11;22) are involved 
more than others  [e.g.  t(5;19)] in translocations. 
Another part of the explanation lies in the effect of 
certain translocations  (i.e.  genomic stability) on the 
survival of the cells.

An additional question that needs to be answered 
is why balanced translocations are seen in certain 
individuals. It has been estimated that balanced 
translocation carriers account for around 0.2 of the 
general population (Karakus et al., 2012). As with the 
rest of many genetic disorders, the genetic/epigenetic 
makeup of the individual along with the environmental 
exposures may explain why this genetic error is 
restricted to particular people.

Conclusion
The current literature finding‑based synthesis denotes 
the high prevalence of balanced chromosomal 
translocations in couples experiencing recurrent 
miscarriages and emphasizes the predominance of 
those chromosomal abnormalities in female patients.

Considerable evidence from published articles and 
from the correlations observed in this work underscores 
the important contribution of Alu/L1 repeat elements 
to the development of reciprocal translocations.
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